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ABSTRACT
Motivation: Topological domains have been proposed as the
backbone of interphase chromosome structure. They are regions
of high local contact frequency separated by sharp boundaries.
Genes within a domain often have correlated transcription. In this
paper, we present an computational efficient spectral algorithm to
identify topological domains from chromosome conformation data
(Hi-C data). We consider the genome as a weighted graph with
vertices defined by loci on a chromosome and the edge weights given
by interaction frequency between two loci. Laplacian based graph
segmentation is then applied iteratively to obtain the domains at the
given compactness level. Comparison with algorithms in the literature
shows the advantage of the proposed strategy.
Results: An efficient algorithm is presented to identify topological
domains from the Hi-C matrix.
Availability: The Matlab source code and illustrative examples are
available at http://www.jie-chen.com/codes.html
Contact: indikar@med.umich.edu

1 INTRODUCTION
Chromosome conformation capture techniques (3C, 4C, Hi-C)
have yielded an unprecedented level of information about genome
organization, and many studies are now exploring the relationship
between genome structure and transcription (Cavalli and Misteli,
2013; Gorkin et al., 2014; Chen et al., 2015b). Chromosome
conformation capture studies suggest that eukaryotic genomes
are organized into structures called topological domains (or
topologically associating domains, TADs). Topological domains
can be defined as linear units of chromatin that fold as discrete three-
dimensional (3D) structures tending to favor internal chromatin
interactions (Nora et al., 2012; Dixon et al., 2012). A majority of
regulatory protein binding sites localize within topological domains.
This suggests that sites associated with domain borders represent
a functionally different subclass of alleles that delimit regions
containing housekeeping genes and insulator sites (Van Bortle
et al., 2014). Detecting the topological domains is thus helpful for
studying the relationship between chromosome organization and
gene transcription. For additional works on delineating structural
domains, see Sexton et al. (2012); Liu et al. (2012); Le Dily et al.
(2014); Lévy-Leduc et al. (2014); Pope et al. (2014).

Topological domains can be detected using data from Hi-C, which
allows genome-wide identification of chromatin contacts. The Hi-C
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method probes the 3D architecture of the whole genome by coupling
proximity-based ligation with massively parallel sequencing. The
Hi-C data matrix records the contact frequency between pairs
of loci. Topological domains, as regions that have high intra-
contacts, are characterized by diagonal blocks in the Hi-C matrix.
To identify topological domains, in (Dixon et al., 2012) the authors
employed a Hidden Markov Model (HMM) on the directionally
index from a Hi-C matrix to determine regions initiated by
significant downstream chromatin interactions and terminated by
a sequence of significant upstream interactions. Filippova and
colleagues (Filippova et al., 2014) formulated the identification
problem by maximizing the domain total reads and introduced a
dynamic programming algorithm to solve the problem with a given
scale parameter.

These methods perform analysis on a 1D read index or on a
2D image segmentation subblock, and they suffer from sensitivity
to initialization (e.g. HMM model parameter adjustment), and
high computational complexity (e.g. dynamic programming for
combinatorial optimization). However, these methods do account
for the fact that Hi-C matrices depend on interactions of loci on
the genome. Specifically, the largest entries in a Hi-C matrix define
a graph whose vertices are loci in the genome and whose edge
weights are the contact frequencies between loci. Loci with high
contact frequency are associated with small Euclidean distance in
3D space. Identifying fine domain resolution structures such as
TADs can directly be translated to the problem of segmenting the
graph into components with weak interconnections. Such graph
partitioning approaches have been well developed in spectral graph
theory (Chung, 1997). Representation of HiC data as a graph and
the usage of graph theoretic approaches have also been investigated
by Botta et al. (2010); Boulos et al. (2013). While the former uses
networks to present its experiment results and the later use graph
theory to discover hubs in chromatin interaction data, neither of
them discusses from the point of view of the graph segmentation
for chromatin data. Based on a graph theoretic interpretation of
Hi-C matrices, we propose a simple and mathematically sound
algorithm for topological domain discovery based on spectral graph
cuts. Domains at different scales are identified by running the
spectral graph cuts algorithm recursively, until the connectivity of
the graph associated with the domain reaches the level of desired
compactness.

Compared with previous algorithms in Dixon et al., 2012
and Filippova et al., 2014, the proposed spectral method has several
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advantages: First, the method leads to topological domains that are
highly correlated with gene transcription. Second, the proposed
method admits a unique solution, and does not suffer from the
severe initialization sensitivity of the HMM method, which is due to
the fact that HMM involves an iterative expectation-maximization
(EM) algorithm. Note that stability with respect to initialization
affects the robustness of a method. Third, using the proposed graph
connectivity stopping criterion leads to domains with sizes more
closely related to the inherent structure of the region. Finally, the
proposed method relates the Hi-C matrix to the spatial coincidence
of loci via a graph and has moderate computational complexity. In
the results section, the advantages of the algorithm are confirmed on
Hi-C data collected from human fibroblast.

2 PRELIMINARIES
2.1 Introduction to Hi-C data
Hi-C evaluates long-range interactions between pairs of segments
delimited by specific cutting sites by using spatially constrained
ligation, and provides ligation information (segment coordinates,
segment directions, etc) for the pairs (Lieberman-Aiden et al.,
2009). These measurements are formatted into a square symmetric
matrix H, where [H]ij stands for the total number of read pairs
sequenced between loci i and j, where locus refers to a sequence
of non-overlapping windows of equal sizes. This window size
is also referred to as the resolution of the Hi-C matrix where 1
Mb and 100 kb are common resolutions. A Hi-C matrix is non-
negative and diagonally dominant and tapered because a segment
has higher probability of ligation with proximal regions as compared
with distal regions. Furthermore, segments from chromosome
centrometric regions cannot be uniquely mapped due to the presence
of repeated sequences along the chromosomal strand. Thus there are
zero-valued bands in the Hi-C matrix. These zero-valued bands are
usually removed since they are non-informative. Finally, the entries
are always nonnegative since they record the contact counts between
pairs of loci. A Hi-C matrix therefore naturally associates a graph
to the genome, where vertices are defined by binned loci in the
genome, and the edge weight between a pair of loci is proportional
to their contact frequency. Consequently, a TAD is a compact region
that can often be visually distinguished as a diagonal block in
the Hi-C matrix. TADs are strongly connected graph components
having strong intra-connections and weak inter-connections (See the
Figure 1 (a)-(c) for illustration).

2.2 Spectral graph theory
Modeling the spatial organization of chromosomes in a nucleus
as a graph allows us to use recently introduced spectral methods
to quantitively study their properties. Our strategy for identifying
topological domains is based on spectral graph theory applied to the
Hi-C matrix. Relevant concepts are reviewed below.

We define a undirected graph as the ordered pairs of sets G =
(V,E) where V = {v1, v2, . . . , vN} is a finite set of vertices with
cardinality N , and E is an edge set consisting of elements of the
form {vi, vj}, i 6= j. The adjacency matrix A(G) (or A for short)
is the symmetricN×N matrix encoding the adjacency relationships
in the graph G, such that [A(G)]ij = 1 only if {vi, vj} ∈ E,
otherwise [A(G)]ij = 0, with [·]ij denoting the ijth entry of its
matrix argument. The degree of a given vertex, denoted by d(vi),
is the cardinality of the neighborhood set in G of vi, equivalently
expressed as

d(vi) =
∑
j∈Ni

[A(G)]ij , (1)

withNi denoting the neighboring vertices of vi. The degree matrix,
D(G), is defined as a diagonal matrix with the ith diagonal entry
given by d(vi), namely,

[D(G]ij =

{
d(vi) i = j
0 i 6= j.

(2)

The Laplacian of graph G is defined by

L(G) = D(G)−A(G), (3)

and the normalized Laplacian is given by

LN(G) = D(G)−
1
2
(
D(G)−A(G)

)
D(G)−

1
2 . (4)

For a graph, let the ordered eigenvalues of L(G) (or LN(G)) be
denoted by λ1, λ2, . . . , λN , where the following relation holds

0 = λ1 ≤ λ2 ≤ · · · ≤ λN . (5)

The second smallest eigenvalue λ2 is known as the Fiedler number,
or algebraic connectivity, which characterizes the connectivity and
stability of the graph (Mesbahi and Egerstedt, 2010). When the
graph is connected the Fiedler number is strictly positive. Intuitively,
a more highly connected graph possesses a larger Fiedler number.
For example, a complete graph is a graph for which every vertex
has degree N − 1 and it has maximum Fiedler number among
all graphs over N vertices. Therefore, the Fiedler number is
an appropriate measure for associating the Hi-C data with the
connectivity properties of the chromatin structures. The eigenvector
associated with λ2 is called the Fiedler vector. For a graph having
several connected components the Fiedler number is zero and the
adjacency matrix is permutation-equivalent to a block diagonal
adjacency matrix A. In this case the components can be uniquely
identified from the signs of the corresponding entries of the Fiedler
vector (Shi and Malik, 2000). The positive and negative pattern
defined by the Fiedler vector is called the nodal domain (Fig. 1 (d)).

More generally, instead of considering binary connections
between pairs, weights can be assigned to each edge such that
[A(G)]ij = wij only if {vi, vj} ∈ E (otherwise [A(G)]ij = 0) to
characterize the connection strengths. The associated degree matrix,
D(G), and Laplacian, L(G) (or LN(G)), are defined in the same
way as in (2)– (4). See (Mesbahi and Egerstedt, 2010; Chung, 1997)
for more details on spectral matrix theory for weighted matrices.

2.3 Characterizing the TAD graph with the normalized
Laplacian

The Hi-C matrix can be interpreted as a weighted adjacency
matrix for TAD graph. The normalized Laplacian (4) has several
advantages over the unnormalized Laplacian (3). The spectrum
of the unnormalized Laplacian is influenced by the nodes having
the highest vertex degree. This can lead to the high degree nodes
masking the nodes with lower vertex degrees, and consequently
leads to loss of sensitivity to complex structure. An extreme example
of this is the case where there is one very highly connected
component and other smaller connected components in the graph.
In this case, the connectivity structure of the highly connected
component will have dominating influence on the graph spectrum,
masking the spectral imprint of the of the other components.
The normalized Laplacian levels the playing field for both highly
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Fig. 1. Illustration of topological domains represented in different senses: (a) physical structures of topological domains (locally compact
regions ). (b) Topological domains are characterized by diagonal blocks in a Hi-C map. (c) Graph model of the contact architectures.
Identifying topological domains is then cast as the problem to segment a graph at weak connections. (d) Nodal domains of Fiedler vector of
the graph forms the basis of the proposed algorithm.

connected components with nodes of high average vertex degree
and components with nodes of lower average vertex degree. This
reduces the masking effect and leads to higher sensitivity to hidden
structure. Using the Fiedler number from the normalized Laplacian
leads to capturing the local structure patterns without being affected
by other regions on the same chromosome with high vertex degree,
which is consistent with our biological objective of finding the
locally organized regions having co-regulated genes. Furthermore,
unlike the unnormalized Laplacian (3), the normalized Laplacian (4)
has a Fiedler number that is upper bounded, specifically λ2 ≤
N

N−1
≤ 2.

3 TOPOLOGICAL DOMAIN IDENTIFICATION WITH
GRAPH SEGMENTATION

As presented, the Fiedler vector of the Hi-C matrix can thus be used
to segment the chromosome into domains, and the Fielder value of
each domain indicates whether the obtained domain is sufficiently
compact, or needs to be further divided. We firstly present some
relevant notation and pre-processing, then the proposed strategy.

3.1 Notation and pre-processing
3.1.1 Dynamic range reduction. Let H be the observed Hi-
C matrix of a given chromosome of length L (with unmappable
regions and diagonal entries removed), and let H be a transformed
Hi-C matrix with reduced dynamic range

[H]ij =

{
0 for i = j
f([H]ij) for i 6= j,

(6)

where the function f(·) is introduced to alleviate the large dispersion
of the raw Hi-C matrix data. Functions such as the power transform
f(x) = xa, with a typically in [ 1

4
, 1

2
], or the logarithmic transform

f(x) = log(x) can be used. Besides reducing data variability, since
the Hi-C matrix is a matrix of counts that can be modeled as Poisson,
power transform can be designed with an exponent that depends
on the position of the entry in the matrix (Hu et al., 2012; Chen
et al., 2015a). The power transform with a = 1

2
(Anscombe, 1948,

1953)) normalizes the variance of the Poisson entries. Alternatively,
the logarithmic transform make entries approximately normal. The
function f can also be selected as a canonical link between
Poisson variables and explanatory variables for Hi-C matrices in a
generalized linear model (GLM) framework (Hu et al., 2012).

3.1.2 Toeplitz normalization. If two loci lie on the same
chromosome of DNA, maximal separation between two loci is the
length of DNA lying between them. As a result closely spaced loci
are likely to have large Hi-C read counts, regardless of their specific

conformation. To remove the distance effect, we employ a Toeplitz
normalization. The Toeplitz normalization divides the (i, j)-th entry
in the Hi-C matrix by the mean of all matrix entries at the same
distance |i − j| from the diagonal. Mathematically, this step is
described by:

HN = H�E, (7)

where � corresponds to elementwise division of entries of H and
E, and the entries of E are given by

[E]k` =
1

card(Ik`)
∑

m,n∈Ik`

[H]mn, (8)

with the set Ik` = {m,n |m − n = k − `, 0 < k, ` < L},
card(I) denotes the cardinality of the finite set I. The Toeplitz
matrix E represents the expected contact frequency as a function
of the genome distance. Note that read depth normalization1 can be
performed beforehand, but we found this does not lead to significant
difference in the results (see supplemental material (SM)).

3.1.3 Fiedler number and vector calculation operator. For an
adjacency matrix A, we use the operator notation

λ2,v ← Fv(A) (9)

to denote the extraction of the Fiedler number λ2 and the Fiedler
vector v, by computing the eigen-decomposition of the normalized
Laplacian of A defined in (4). When we want to emphasize the
extraction of the Fiedler vector, we abuse notation by omitting λ2

from the notation (9), i.e., we write v ← Fv(A).

3.2 Topological domain extraction via recursive
partitioning

In this subsection, a topological domain extraction strategy is
proposed based on the normalized graph Laplacian. The algorithm
considers both local interactions and long-range interactions
embedded in the Hi-C matrix. The algorithm first extracts initial
domains via the sign of the Fiedler vector, then it splits each
domain recursively until the Fiedler number of a newly obtained
domain is higher than some threshold and the size of the domain
is sufficiently small. As the Fielder number is proportional to
the algebraic connectivity, this threshold ensures discovery of
sufficiently disconnected domains.

1 The read depth normalization is defined as HD = cD−1HD−1 where
D is a diagonal matrix with [D]ii =

∑L
j=1[H]ij , and the scalar c is the

total number of reads.
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At the first step, we consider the weighted graph with edge
weights defined by the Toeplitz normalized matrix HN. The Fiedler
vector, denoted by v(1), of this graph is computed and the graph is
segmented into two clusters that are differentiated by the signs of
the Fiedler vector entries. A number of locally compact structures
are then given by the sets of vertices with the same sign on the
largest range of continuous indices from i to j. This results in the
region Di-j defined by v(1)i , v

(1)
i+1, . . . , v

(1)
j having the same sign.

Experimentally we have observed that the sizes of these domains
vary from 100 kb to several megabases. They can naturally be
defined as the initial topological domains. We can identify over 3000
TADs determined by the Fiedler vector derived from HN. We will
see that compared with the gene expression represented by RNA-
seq counts, regions within each domain approximately behave in
a binary manner, all active, or all inactive. Further, all domains
with the same sign behave binary manner, active or inactive. From
spectral graph theory, we known that domains with the same sign are
in the same cluster, and have fewer connections to other clusters than
connections within their own cluster. This result obtained from HN

considers the overall contact organization of the chromatin. This
step results in segmentations that are similar to the compartments
A and B obtained from (Lieberman-Aiden et al., 2009). A further
comparison can be found in supplementary materials (Sec. 4).

Topological domains are likely to exhibit hierarchical structures
(Filippova et al., 2014). After determining the initial domains via
the Fiedler vector of HN , we therefore further divide these domains
to sub-domains having smaller sizes. For an obtained domain Di-j ,
we calculate the Fiedler vector of the graph whose adjacency matrix
is given by the sub-matrix of H indexed by Di-j , followed by
splitting Di-j into sub-domains based on the signs of its Fiedler
vector entries. In this step matrix H is used, since the determining
these smaller sub-domains relies on diagonal block structures in H,
instead of the long-range interactions exhibited in HN. The Fiedler
number of the obtained domains are calculated and compared with a
predefined threshold λthr to determine whether they are sufficiently
compact, or can further be split. The full algorithm is summarized in
Algorithm 1. An example of the algorithm processing is illustrated
in supplemental data file, Fig. S1. A discussion of this two-step
strategy and alternative strategies is included in the SM.

3.3 Computational complexity
The complexity of the proposed algorithm is dominated by the
eigen-decomposition of the normalized Laplacian matrices. Step 1
requires the eigen-decomposition on a moderate size matrix (e.g.
≈ 2300 × 2300 for chromosome 1 at 100 kb resolution, ≈
350 × 350 for Chromosome 22 at 100 kb resolution). The
resultant recursions will process matrices of much smaller sizes,
and the computational time for eigen-decomposition is reduced
significantly. In the next section, we will provide more details
on computational requirements. For higher resolutions with larger
matrices, this computation can be performed more efficiently by
only computing a few of the first smallest eigenvalues and the
associated eigenvectors, using, for example, power iterations (Saad,
1992), or by distributed means (Kang et al., 2011). These particular
strategies will be investigated in future work .

4 RESULTS
In this section we illustrate the proposed algorithm and compare
it with previously proposed algorithms. The algorithms were first

Algorithm 1: Identification of TADs via graph Laplacian
Parameters: Fiedler number threshold λthr, and user-supplied

lower bound L on domain size.
Pre-processing: For a given chromosome, compute the matrix

H using (6) and the normalized matrix HN

using (7).
Algorithm:
Step 1: Calculate the Fiedler vector of the matrix HN:

v(1) ← Fv(HN) (10)

Initial TADs are given by the contiguous regions in v(1) with
the same sign.
Step 2: For each obtained domain, compute its Fiedler number
and vector for each associated sub-matrix in H:

λ2,v ← Fv(HDi-j ) (11)

If the Fiedler number is smaller than the threshold λ2 ≤ λthr,
segment the current domain again via v.
Recursion: Repeat step 2 until the obtained sub-domain has a
Fiedler number larger than the threshold, or its size reaches the
lower bound L.

applied to Hi-C data obtained from human foreskin fibroblasts
from a normal karyotyped male individual. Fragment contacts were
binned to generate Hi-C matrices at 100 kb resolution. The Hi-C
library, RNA-seq library, data collection, and raw data processing
were all performed by our laboratory, see SM and Chen et al.,
2015b for the protocols, the detailed cell culture, and data collection
methods. The algorithm was then applied to Hi-C data from IMR90
cells at a higher 5 kb resolution. Details of the toolbox can be found
in Section 1 of SM.

For comparison, we considered the topological domains
extraction methods presented in Dixon et al., 2012 and Filippova
et al., 2014. In Dixon et al., 2012 the authors defined the
directionality index (DI) at each bin by

IDI =
Ndown −Nup

|Ndown −Nup|

[
(Nup −Nav)

2

Nav
+

(Ndown −Nav)
2

Nav

]
,

(12)
where Nup denotes the reads from the current bin to 2Mb upstream,
Ndown denotes the reads from the current bin to 2Mb downstream,
and Nav = 1

2
(Nup + Ndown). Then the directionality index was

modeled as the observation of a hidden Markov model (HMM)
under a Gaussian mixture model, endowed with three hidden
states associated with the start, end and middle of a domain.
In Filippova et al., 2014, the authors formulated the topological
domain identification problem via the following optimization:

max
ai,bi

∑
1≤ai<bi≤N

q(ai, bi, γ). (13)

The function q is defined by q(k, l, γ) = s(k, l, γ) − µs(k − l),
where s(k, l, γ) = Nkl

(k−l)γ
with γ a scale parameter and Nkl is total

reads between loci k and l, and µs(k− l) is mean value of s(k, l, γ)
over all sub-matrices of length l − k. The optimization (13) was
solved via dynamic programming (DP).
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(a) HMM method (b) DP method with γ = 0.2 (c) DP method with γ = 0.25

(d) Proposed method with λthr = 0.8 (e) Proposed method with λthr = 0.9

Fig. 2. Illustration of estimated topological domains on Chromosome 22 obtained by previous algorithms and the proposed algorithm.

For brevity, in this paper we illustrate the identified topological
domains for one of the smaller chromosomes of the fibroblasts: chr-
22. Results on all the other chromosomes can be found in Fig. S2–
S23 in the supplemental file. The logarithmic transform f(·) was
used in (6) to reduce the dynamic range of data and for variance
normalization. The proposed algorithm and the two comparative
algorithms were then applied to the transformed Hi-C matrix of
Chromosome 22. For the HMM method, we took reads from current
bin to 1Mb upstream and downstream forNup andNdown instead of
the 2Mb in the original presentation upstream/downstream distance
in order to investigate its effect on the domain size distribution
in the HMM segmentation. However, the upstream/downstream
distance did not appear to have an effect on the size distribution.
For the DP algorithm, the parameter γ was set to γ = 0.2 and
0.25, respectively. For the proposed algorithm, Algorithm 1 was
implemented with λthr = 0.8 and 0.9, respectively.

The identified topological domains are illustrated in Fig. 2 with
diagonal blocks marked by blue squares. It can be observed that the
proposed algorithm provides results that are most consistent with
the observations, and finer domains can be obtained hierarchically
by increasing the threshold λthr. Compared with the proposed
algorithm, the HMM methods have difficulty controlling the domain
resolution to user specifications. Furthermore, the HMM algorithm
suffers from the problem of convergence to local maxima of the
likelihood function and is over-sensitive to the initialization. The
DP method has very high computational complexity, especially
for large chromosomes. A comparison among these algorithms
and quantitive computational time are reported in Table 1
and 2 respectively. The advantage of the proposed algorithm
in computational efficiency for Hi-C data at 100 kb resolution
is obvious. Detailed information on the boundary coordinates
identified by the three algorithms are provided in the SM.

We use Chromosome 22 to illustrate the capability of the
proposed algorithm to identify meaningful domains. The size
distribution of identified TADs using the proposed algorithm with
λthr = 0.8 and λthr = 0.9 are shown in Fig. 3(c).Their boundary
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Fig. 3. (a,b) Domain size distribution of the identified TADs on all
chromosomes (a) and Chr-22 (b) with λthr = 0.8 (top) and λthr =
0.9 (bottom) respectively. (c,d) The number of identified TADs (top)
and mean TAD size (bottom) on all chromosomes (c) and on Chr-22
(d) versus the Fiedler number threshold.
coordinates are reported in Table S3. While varying the Fiedler
number threshold λthr, we then count the number of domains
identified by the proposed algorithm and compute the mean size of
the domains. In the top part of Fig. 3(d), as expected the number
of domains found in Chromosome 22 increases with increasing
λthr. Not shown are the results of decreasing the threshold below
0.8, where there is little change in segmentation. This is due to
the fact that the segmentation on HN in Step 1 results in small
size domains. Finally, when the threshold reaches λthr = 2, the
domains are composed of single bins and the number of domains
equals the size of the Hi-C matrix. We compare the identified TADs
with those identified by the HMM method. Firstly, the proposed
methods identified more TADs than the HMM method (Table S2
and Table S3). Secondly, note that the proposed method and HMM
give very different TAD segmentations. Even the first splitting
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Table 1. Comparison of the three algorithms

HMM DP Laplacian
Measure Directionality index Reads (normalized) Fiedler number

(normalized)
Key methods State estimation with Hidden

Markov chain
Optimization with dynamic
programming

Spectral clustering with graph
Laplacian

Characteristics Method in original paper Optimal in region total reads Good physical interpretation
Resolution Partially related with the

length for DI
Related with γ Related with λthr

Hierarchical identification No Multiscale Yes
Robustness Sensitive to initial conditions Unique solution Unique solution
Complexity Moderate High Low

step results in a larger number of domains than that identified
by the HMM method. We show below that the TADs produced
by the proposed spectral method with have significantly higher
correlation to the transcriptional gene expression as determined by
RNAseq (see Fig. 4). Therefore we conclude that the proposed
method captures more meaningful structures. Furthermore the
domain boundaries captured from these two methods often do not
line up (See Table S3) making further comparisons between the
proposed spectral methods and the HMM method difficult. Fig. 3(d)
shows the total number of domains identified for Chromosome 22.
Correspondingly, the bottom part of Fig. 3(d) shows the mean TAD
size, which is expected to decrease with increases in the Fiedler
number threshold. The results for the rest of the chromosomes are
reported in the supplementary materials. Our proposed method
also reveals that although they have the same algebraic connectivity
(Fielder number), the topological domains of Chr 17 and 19 are
larger than those of Chr 18. This may be related to the fact that
Chr 17 and 19 are rich in protein coding genes while Chr 18 has
fewer such genes.

We next illustrate the relationship between the chromosome
structure and gene expression via the identified topological domains.
Gene expression is represented by RNA-seq counts. RNA-seq was
performed simultaneously with Hi-C in our laboratory. In order
to be consistent with Hi-C matrix resolution, we summarized the
gene RNA-seq counts into bins of 100 kb resolution, according
to their locations. In Fig. 4(a), we show the Fiedler vector of
Chromosome 22 obtained in Step 1 of Algorithm 1 and its RNA-seq
counts. It can be observed that the sign pattern of the Fiedler vector
has high correlation with the expression levels of the RNA-seq
data. Note that each locally consistent sign region is a topological
domain obtained at Step 1 of Algorithm 1. To show this in a
quantitive manner, we took the sign of the Fiedler vector and
thresholded the RNA-seq count vector (where the threshold was
selected for each chromosome to maximize the correlation), and
then computed the correlation coefficient between these two vectors
for all chromosomes. The correlation values are shown in Fig. 4(b).
Significant correlation is observed according to this result (with p <
10−6 by permutation test. This shows that initial TADs are generally
consistent with the two chromosome compartments in the genome,
heterochromatin or euchromatin. We also show the decreasing trend
of the relation between the averaged variance of log-scaled RNA-
Seq reads within TADs versus the Fiedler number threshold (Fig.
S33). These results confirm the relationship between the identified
topological domains and the functional expression (Lieberman-
Aiden et al., 2009; Dixon et al., 2012), and also reveals the quality
of the identified topological domain.

50 100 150 200 250 300

Fi
ed

le
r 

ve
ct

or

-0.1

-0.05

0

0.05

0.1

Bins
50 100 150 200 250 300

R
N

A
se

q 
co

un
t

2000

4000

6000

8000

10000

(a) Fiedler vector and transcription activity

Chromosomes
1 2 3 4 5 6 7 8 9 10111213141516171819202122

C
or

re
la

ti
o
n

0.3

0.4

0.5

0.6

0.7

(b) Correlation on all chromosomes

Fig. 4. Comparison between Fiedler vector obtained in Step 1 of
Algorithm 1 and transcription described by RNA-seq counts.
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Fig. 5. CTCF enrichment on Chromosome 22 (blue) with the
locations of identified TAD boundaries (red vertical lines).

As compared to DP and HMM methods, the proposed method
identifies TAD boundaries that are more consistent with the
locations of known CTCF enrichment peaks. We plot the CTCF
ChIP-seq enrichment at bins of 100 kb resolution with the locations
of identified TAD boundaries for the three compared algorithms in
Fig. 5, with CTCF enrichment extracted from (Ziebarth et al., 2013).
It has been proposed that TAD boundaries coincide with insulators
such as CTCF binding sites. However, 85% of CTCF binding sites
localize within TADs rather than at their borders, suggesting that
most CTCF sites are unlikely to aide in identifying the borders
that separate TADs. Meanwhile, multiple studies suggest that
some insulator elements are not capable of enhancer-blocking or
chromatin barrier activity (Schwartz et al., 2012; Van Bortle et al.,
2012; Schuettengruber and Cavalli, 2013). Compared with the other
two algorithms, the boundaries identified by the proposed algorithm
are more consistent with CTCF enrichment peaks. A particularly
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Table 2. Computation time comparison of the three algorithms (in sec. on
iMac with 2.6GHz intel Core i7 and 4G RAM)

Chr 1 Chr 4 Chr 9 Chr 14 Chr 22
HMM 124.5 102.9 67.3 45.5 21.1

DP > 1hr > 1hr 2399.8 609.1 10.2
Laplacian 2.8 1.8 0.8 0.5 0.1

visible example can be found for the large TAD between 300 and
350 bins.

Finally we illustrate the scalability of the proposed spectral
algorithm to Hi-C data at higher resolution (5kb) by applying it to
the Hi-C IMR90 cell data of Rao et al. (2014). Results of the last
2000 bins with λthr = 0.4 and λthr = 0.6 are shown in Fig. 6 for
Chromosome 22.

(a) γ = 0.4 (b) γ = 0.6

Fig. 6. Identified topological domains on Chromosome 22 (at last
2000 bins) at resolution of 5 kb.

5 CONCLUSION
In this paper, we presented a method for identifying topological
domains based on the spectral decomposition of the graph Laplacian
of the Hi-C matrix. The proposed algorithm has clear mathematical
interpretation and is more computationally efficient than previous
methods, allowing it to be applied to higher resolution Hi-C data.
Its favorable comparison with other algorithms and its higher
correlation with gene transcription dataillustrate the advantages
of the proposed spectral method. Future work may include
investigating fast iterative algorithms or parallel computation
algorithms for improving the efficiency at higher resolutions.
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